

Dimensioning of optimal spare parts stock in an operational dynamic situation

Case: Swedish airforce reconnaissance POD (SPK39)

Younes Lousseief, Systecon AB

© Systecon AB 2010

Summary

How to dimension a cost efficient stock of spare parts when having *large variations* in system utilisation?

Case study: Modular reconnaissance POD for JAS39 Gripen (SPK39)

But first, some theory...

www.systecon.se

Systecon AB 2010

System Approach

System Approach

Right stock at the right place

System Approach LORA - Level Of Repair Analysis

Should I perform item repair and, if so, where?

www.systecon.se

Systecon AB 2010

System utilisation

High system utilisation

- + Less system down time
- ? Have I overinvested in spares compared to my operational requirements?

- + Less investment in spares
- ? Is my stock sufficient to keep me up and running during the peak periods?

System utilisation vs item repair TAT

Steady state reached during peak period

- → Results for the peak period are trustworthy
- → UTILF = High and low. Compare!

Steady state *not* reached during peak period (neither in low period)

- → The results need to be further analyzed with respect to time
- → Can next peak period be met with the same system performance?
- → UTILF = High? Low? Average?

Cost/Efficiency curve

- Steady-state
- Analythical tool
- Average situation

- Monte Carlo simulation
- Operational profile in time
- Mission based results

Case study: Modular Reconnaissance Pod - Sweden

Material Break Down Structure

Support organisation

*OEM=Original Equipment Manufacturer

Operational organisation

Required maintenance resources

LORA: 4 different Maintenance concepts

- Large resource investment costs

- Longer Turn-around-Time
- +/- Less resource investment costs

- Longer Turn-around-Time
- + No resource investment costs

...or discard items instead of repair?

OPUS10 spare part optimization and LORA analysis

Input data

Peak periods

Overinvestment

OPUS10 Cost/Efficiency curve

Mission success

Steady state

Result analysis 1

Result analysis 2

Result analysis 3

Steady state result

Steady state reached

→ Period of interest

Conclusions

- Variations in utilisation with respect to time calls for detailed analysis in time
- When having cyclic operational profile, measure the performance when reaching *steady state*
- It is important to perform during the periods of high utilisation since they tend to be more crucial

Moreover

 Satisfactory system availability is not enough when having a mission based operational profile

www.systecon.se

Systecon AB 2010